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ABSTRACT: Molecular bottlebrushes consist of a linear polymer
backbone that is densely grafted with side chains. They have
received considerable attention due to their unique physical
properties (e.g., very high entanglement molecular weights) relative
to linear homopolymers. To date, their relaxation dynamics have
received significantly less attention than their conformation and
self-assembly. In this article, we make use of dissipative particle
dynamics (DPD) simulations with proper orthogonal decom-
position (POD) to study the relaxation dynamics of bottlebrushes
in dilute solutions. The modes obtained by POD suggest that the
backbone behaves identically to a linear chain and that the motions of its monomers are coupled to the side chains because of their
grafted state. Although simulations of linear chains behaved as expected from the Zimm model, the scaling of the relaxation times of
the bottlebrushes with Rg followed an unexpected scaling relationship τ ∼ Rg

3.4. Our simulations demonstrate that the origin of this
scaling law resides in differences between the scaling of Rg and the hydrodynamic radius Rh as the bottlebrush molecular weight is
varied and that the Zimm model accurately describes dilute solutions of bottlebrushes.

■ INTRODUCTION
Molecular bottlebrushes form from a dense grafting of side
chains to a macromolecular backbone and can be synthesized
in several ways.1 First, atom-transfer radical polymerization
(ATRP) can be used to first polymerize a linear backbone,
after which additional initiation sites can be installed along the
backbone so that side chains can be “grafted from” the
backbone to form the bottlebrush. Another common method
that uses ring opening metathesis polymerization (ROMP) has
become a popular means for synthesizing bottlebrushes from
norbornyl-functionalized macromonomers. Such macromono-
mers can be synthesized by traditional controlled radical
polymerization techniques (e.g., RAFT or ATRP).2 This “graft-
through” method offers a vast number of accessible side chain
chemistries while also allowing for multiple side chains per
backbone site.3 Combining ROMP with recent advances in
synthesis has produced families of precise bottlebrushes with
discrete side chains (Đ = 1.0) and a number of different
topologies.4 Finally, bottlebrushes can be synthesized with a
“grafting-to” approach by grafting side chains to a pre-existing
polymer backbone.5

Bottlebrushes, or polymacronomomers as they have also
been referred to historically,6−11 have received considerable
attention in recent years due to unique physical properties that
result from their architecture.12 For example, bottlebrushes
possess very large entanglement molecular weights (Me)
compared to those of traditional linear polymers. For typically
accessible bottlebrush molecular weights, Mn < Me meaning
that they effectively do not experience entanglements. Cai et

al.13 took advantage of the lack of entanglements to synthesize
ultrasoft polymer gels which might be used in biomedical
applications. Other work has investigated the potential of
bottlebrush-like molecules for single-molecule electronics,14,15

artificial mucins,16 and modulating their biological func-
tion17,18 among many other applications.1,19−22 In all of
these examples, the conformation of the bottlebrush, whether
in terms of the backbone, side chains, or entire molecule, was
central to the properties of the materials that they comprised.
For instance, Kruger et al.16 synthesized two chemically
identical bottlebrushes using either Schrock’s tungsten
alkylidene catalyst, which produced cis-rich bottlebrushes, or
Grubbs’ ruthenium catalyst, which produced trans-rich
bottlebrushes. The choice of the catalyst ultimately affected
the shape of the bottlebrushes, with cis-rich bottlebrushes
exhibiting worm-like conformations and trans-rich bottle-
brushes forming globules, as observed with atomic force
microscopy (AFM) and small-angle neutron scattering
(SANS) measurements. While the worm-like bottlebrushes
resembled natural mucins and functioned as such, globular
bottlebrushes did not express any useful biological function.
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The assembly and conformation of bottlebrushes have been
previously studied by multiple techniques, including Monte
Carlo simulations,23,24 polymer field theory,3,25,26 molecular/
Brownian dynamics simulations,24,27−34 PRISM,30 analytical
theories/scaling analysis,29,32 light/neutron scatter-
ing,6,7,9,10,14,16−18,35−37 and many others. Taken together, this
body of work is generally in agreement with regard to the
shape of bottlebrushes, and here, we briefly highlight only
some select results from prior simulations. Given the large
parameter space available for bottlebrushes, early Monte Carlo
simulations focused on experimentally relevant values of
backbone (Nbb) and side chain (Nsc) lengths and found that
the backbone radius of gyration scaled as Rg,bb ∼ Nbb

0.62, while
the side chains obeyed a stronger scaling Rg,sc ∼ Nsc

0.68.23 These
scaling relations arise because for typical bottlebrush molecular
weights, the molecules exist in an intermediate regime between
rod-like conformations for short backbones and those
described by random walks which are expected to arise for
very high molecular weights. For this reason, Binder and co-
workers24 proposed that many mass scaling relationships (e.g.,
for Rg with N) obtained for bottlebrushes may not be
particularly relevant. Nevertheless, these relationships may be
useful in the interpretation of small-angle scattering measure-
ments. In their Monte Carlo simulations, Binder et al.
extensively explored the conformation of bottlebrushes at
several length scales and quantitatively matched experimental
SANS measurements.24 More recent calculations of the overall
bottlebrush shape from the gyration tensor37 found that
bottlebrushes were roughly spherical for short backbone
lengths and became increasingly anisotropic as the backbone
length increased. These observations were in general agree-
ment with complementary SANS measurements. Grubbs and
co-workers have shown that in solution, bottlebrush concen-
tration38 can affect conformational properties such as the
anisotropy of the molecule, and care must be taken when
choosing models to fit small-angle scattering measurements
since strong correlations between structural parameters can be
present.39

To date, investigations into the relaxation dynamics of
bottlebrushes are more scarce in the literature than structural
studies. Rheological measurements of polyolefin bottlebrush
melts have shown that relaxations at short times followed
predictions from the Zimm model, but as the length scale
increased Rouse-like relaxations emerged.40 Importantly, the
Zimm-like dynamics were not attributed to hydrodynamic
interactions but rather to shielding effects near the backbone
that mimicked the hydrodynamics in the solution state. At
longer times, the bottlebrushes behaved as though they were
unentangled Gaussian chains. These observations are also
supported by dynamic light scattering (DLS) measurements41

that suggest similar relaxation modes for linear polymers and
bottlebrushes so long as their contours (e.g., the backbone of
the bottlebrush) are similar. Other DLS measurements that
compared polyelectrolyte bottlebrushes to analogous linear
polymers observed that although the behaviors of the two
architectures were similar, the relaxation times of the
bottlebrushes were at least a factor of 2 longer than for the
linear chains.42 Broadband dielectric spectroscopy (BDS)
measurements of poly(dimethylsiloxane)-based (PDMS) bot-
tlebrushes primarily observed segmental relaxations of the side
chains due to the much larger number of dipoles present in
those portions of the molecule. Compared to free side chains,
the grafted side chains exhibited dynamics that were roughly

an order of magnitude slower for the lowest molecular weight
chains, although this effect became less pronounced as the side
chain length increased and confinement was reduced. Bichler
et al.43 compared the dynamics of solid-state PDMS linear
polymers to bottlebrushes and found that architectural
differences between the two classes of molecules did not
impact segmental dynamics beyond an increase in the
relaxation time for the bottlebrush system, in general
agreement with the solution-state measurements by Horkay
et al.42 Prior to diffusive motions of the bottlebrushes or
entanglements of the linear polymers, the dynamics of both
architectures followed the Rouse description. Quasi-elastic
neutron scattering (QENS) measurements using neutron
backscattering were largely in agreement with these BDS
measurements.44 More recent QENS measurements45 using
neutron spin−echo spectroscopy focused on PDMS bottle-
brushes with either short or long side chains. QENS
measurements of the samples with shorter side chains were
thought to be more sensitive to backbone dynamics, whereas
the longer side chain samples were more representative of the
dynamics of the entire bottlebrush. For values of the scattering
vector Q that matched the length scales of interest of the
molecule, the authors found that the relaxation times of the
backbone and entire molecule were scaled as τ ∼ Q−2.5 and τ ∼
Q−3.9, respectively. To the best of our knowledge, no extensive
simulation studies of the relaxation dynamics of molecular
bottlebrushes exist in the literature. Such simulations are made
difficult by the fact that Rouse mode analysis may not be
applicable to the bottlebrush architecture without first
identifying an appropriate basis for calculating the normal
coordinates.

Motivated by these previous studies, we show in this article
that proper orthogonal decomposition (POD) can be used to
study the dynamics of both the backbone and the entirety of a
bottlebrush molecule. In this study, we used dissipative particle
dynamics (DPD) simulations, coupled with POD, to study and
analyze the dynamics of bottlebrush polymers in dilute, good
solvent conditions. First, we verified that DPD and our
parameter set produced bottlebrushes and observed how
varying the backbone length and side chain spacing affected
the conformation of the molecules. Next, we calculated the
modes for a bottlebrush and used them to perform mode
analysis in our simulations to understand the dynamics of the
bottlebrushes. Finally, we investigated the scaling of the longest
relaxation time of the bottlebrush and its backbone as a
function of the architectural parameters (e.g., backbone length)
and compared the results to prior experimental investigations
by others. The results of this study are in good agreement with
previous experimental results and help to coalesce our
understanding of their dynamics while also suggesting new
avenues that may be explored in the future to better
understand this class of polymers.

■ MODEL AND METHODS
Dissipative Particle Dynamics (DPD). The temporal evolution

of dilute bottlebrush solutions was simulated using DPD. DPD is a
coarse-grained particle dynamics technique that preserves hydro-
dynamic interactions and can access mesoscopic time scales due to
the use of a soft-repulsive conservative force. Forces act between
particles within a cutoff distance rc, and rc is used to define the
fundamental unit of length in DPD. We focused exclusively on good
solvent conditions, while systematically varying the backbone length
(Nbb) and the number of monomers along the backbone between side
chain grafting points (Nx). Each bottlebrush was grafted with ns =
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Nbb/(Nx + 1) side chains and had a total degree of polymerization of
Ntot = Nbb + nsNsc. Simulations were performed at a particle density of
ρ = 3 rc

−3 in a cubic system with periodic boundary conditions and a
lateral size of Lx = Ly = Lz = 48 rc. The system size was chosen to be
much larger (8 − 10x) than the largest value of the radius of gyration
(Rg) of a bottlebrush to minimize the effects of any potential
interchain interactions. In all simulations, the bottlebrush volume
fraction was fixed at ϕp = 0.05, with the number of polymers in the
simulation box given by np = ϕpρ LxLyLz/Ntot. In practice, np varied
between approximately 50 and 500 polymers depending on the value
of Ntot. As illustrated in the Supporting Information (Figure S1), for
ϕp ≤ 0.1, we observed no effect of polymer volume fraction on our
results. We used our in-house parallel DPD code (PD2) for all
simulations.

In DPD, coarse-grained fluid elements (“DPD beads”) separated by
distances less than rc interact through a conservative, random, and
dissipative force. The soft-repulsive conservative force in essence
assigns a particle type to the DPD beads through interaction strength
aij, while the random and dissipative forces combine to form the
thermostat for the simulation. These forces are pairwise between
particles i and j and read

=

=

= ·

F r

F r

F r v r

a w r

t w r

w r

( )

( ) ( )

( )( )

ij ij ij ij

ij ij ij ij

ij ij ij ij ij

C R
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D D
(1)

where rij = ri − rj, rij = |rij|, rîj = rij/rij, and vij = vi − vj. In addition to the
three DPD forces, bonded monomers were connected by a FENE
potential using identical parameters to our previous work.46 θij is a
symmetric random variable with ⟨θij⟩ = 0 and ⟨θij

2⟩ = 1, which is
unique for each pair of particles at each time step. The fluctuation−
dissipation theorem requires that the coefficients of the random and
dissipative forces be related to each other by σ2 = 2γkBT, in which we
set ϵ0 = kBT = 1. Although not required, the weight factors for the
dissipative and conservative forces are commonly related by wD(rij) =
[wR(rij) ]2, where

=
<

l
m
ooooo

n
ooooo

w r

r

r
r r

r r
( )

1 ,

0,
ij

ij
ij

ij

R c
c

c (2)

with the cutoff distance rc = 1. The interaction strengths between all
particles were fixed at aij = 25ϵ0/rc, which has been previously shown
to produce good solvent conditions for DPD simulations of polymer
solutions.47,48

Finally, the DPD bead positions and velocities were updated from
time t → t + Δt by integrating Newton’s second law using the
velocity-Verlet algorithm with a time step of Δt = 0.01 τ0.

49

Simulations were performed by initializing bottlebrushes and their
monomers at random positions in the simulation box and allowing
them to equilibrate such that kBT ≈ 1 and Rg saturated to a constant
value, which occurred within 105 time steps. After equilibration, we
performed 3 × 106 production time steps over which we collected

monomer information for analyzing the relaxation dynamics. For the
largest bottlebrushes, it was occasionally necessary to run the
simulations for longer times (≈8 × 106 time steps) to ensure that
Cp(t), described below, decayed to below 0.1.
Proper Orthogonal Decomposition (POD). The time scales of

bottlebrush relaxations were studied using POD, which is an approach
closely related to principal component analysis (PCA) and singular
value decomposition (SVD). In traditional simulations of linear
homopolymers, Rouse mode analysis is used to observe the time
necessary for the normal coordinates Xp(t) of the polymers to become
uncorrelated in time, where p is the mode number. The normal
coordinate is related to the amplitude of each mode.50 For such
polymers, the normal coordinates are given by cosine transforms of
the monomer positions ri(t)
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The relaxation time for each p is computed from the autocorrelation
function of Xp(t)
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where 0 ≤ βp ≤ 1 is a stretching exponent and τp is the relaxation time
of mode p. As βp decreases, the relaxation dynamics become
increasingly heterogeneous. Previous studies using POD, which is
described in detail below, have obtained best fits to Cp(t) using βp = 1,
which we will also use throughout the remainder of this paper.46,51

Strictly speaking, the cosine basis appearing in eq 3 is valid only for
linear homopolymers. Similar relationships can be derived for other
polymer architectures, such as statistical copolymers52 and star
polymers,53 but in practice it may be challenging to analytically
identify the correct eigenvectors for a given polymer architecture. For
this reason, in the present study, Cp(t) was calculated using normal
coordinates that were obtained numerically by POD. In this approach,
snapshots of the monomer positions for each bottlebrush are stored to
construct a covariance matrix M for each q = x, y, or z coordinate of
the monomers, where

=
=

M
T

q t q t1
( ) ( )ij

t

T

i j
q

0

1

(5)

In the above expression, T is the total number of snapshots of the
coordinates and qi′(t) denotes, at time t, the distance between particle
i and the center of mass of the molecule it comprises.46,51 The x, y,
and z components are treated independently, and the results are
averaged to reduce statistical fluctuations in the results.

The normalized eigenvectors ψp of M, when ordered by decreasing
value of their corresponding eigenvalue, represent the basis necessary
to obtain Xp(t) from ri(t) for the p = 1, 2,..., Nth mode, as in eq 3. In
other words, when using POD, the normal coordinates for a given
bottlebrush are computed as the product

Figure 1. Simulation snapshots showing the effect of architectural parameters on the bottlebrush structure. (A) Effect of increasing backbone length
(Nbb) for Nsc = 10 and Nx = 0. (B) Effect of increasing side chain spacing (Nx) for Nbb = 30 and Nsc = 10.
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= × [ ]X x y zt t t t( ) ( ) ( ) ( )p p
n

n n n (6)

where the vector xn(t) contains the x-coordinates of the n = 1, 2,<, N
monomers in the bottlebrush as components, and so on. The normal
coordinate autocorrelation Cp(t) is then computed by using eq 4.

■ RESULTS AND DISCUSSION
Bottlebrush Structure. Polymer conformation influences

the relaxation dynamics. For example, the dynamics of
unentangled polymers in the absence of hydrodynamic effects
can be described by the Rouse model, where the relaxation
time of mode p scales as τp ∼ (N/p)(2ν+1) ∼ Rg

(2ν+1)/ν.
Information about the chain conformation is contained in
Flory parameter ν, which describes the scaling of Rg with N.
When hydrodynamics play an important role, the Zimm model
predicts τp ∼ (N/p)3ν ∼ Rg

3. Although the scaling of τp with Rg
is sensitive to polymer conformation in the Rouse model, the
scaling of τp with Rg is independent of ν in the Zimm model.

Because of the relationship between polymer conformation
and dynamics, we evaluated how varying the key architectural
parameters of the bottlebrushes influenced their size and shape
since our DPD simulations use different parameters than
previous molecular dynamics or Monte Carlo simulations.
Snapshots of representative bottlebrushes are shown in Figure
1a for different values of the backbone length (Nbb) at fixed
values of Nsc = 10 and Nx = 0. Backbone and side chain
monomers are rendered as blue and gray beads, respectively.
Qualitatively we observe that as Nbb increases from 10 to 100
(left to right), the molecule becomes increasingly anisotropic
and worm-like in its shape. This behavior has been observed in
several prior simulation studies by others.27,31,32,37 Figure 1b
highlights the effect of increasing Nx (left to right) for fixed
values of Nbb = 30 and Nsc = 10, with both the entire molecule
and backbone becoming less elongated as Nx increases.

In Figure 2a, we plot the radius of gyration of the backbone
(Rg,bb) as a function of its length on a double logarithmic scale
for Nx = 0−5 and Nsc = 10. The backbone is elongated for Nx =
0, with Rg ∼ (Nbb − 1)0.73, which is similar to the scaling
exponent of ν ≈ 0.7 observed by both Yethiraj23 and Dutta et
al.,37 but slightly larger than the exponent of 0.62 observed by
Binder et al.24 This indicates that for the set of parameters
considered here, the bottlebrushes are within the transition
region between highly elongated conformations and more ideal
conformations that are expected to arise for sufficiently long
backbones. In addition, we observe that the scaling exponent
decreases as Nx increases due to reduced crowding by the side
chains, which allows the backbone to adopt a more ideal
conformation. Despite the relatively elongated conformation of
the backbone, we observe a weaker scaling of Rg,tot with Nbb. In
Figure 2b, we plot Rg,tot as a function of the total degree of
polymerization Ntot on a double logarithmic scale and observe
a few behaviors. First, Rg,tot decreases as Nx increases, as
expected from the snapshots shown in Figure 1b. Second, the
scaling of Rg with Ntot becomes weaker as Nx increases,
decreasing from ν ≈ 0.56 (Nx = 0) to ν ≈ 0.50 (Nx = 5). These
scaling exponents are similar to those measured experimentally
using SANS.14,16,17,35

Finally, the hydrodynamic radius of bottlebrush Rh is shown
in Figure 3a. Although the radius of gyration of the molecules
obeys different scaling laws for different values of Nx, we
observe that Rh follows a single power law for all values of Nx,
implying that the ratio Rg/Rh varies as Ntot increases and as Nx
is changed. Previous work by others31,37 has observed that this

ratio is not constant for bottlebrushes and exhibits a minimum
for intermediate values of Ntot. We plot this ratio in Figure 3b
for both the bottlebrushes (open points) and linear polymers
(solid triangles) as a function of the radius of gyration of the
molecules. For the linear polymers, Rg/Rh ≈ 1.6 and relatively
constant, which is exactly the prediction from Zimm theory.54

As the density of monomers increases, Rg/Rh is expected to
decrease toward the hard sphere limit (Rg/Rh = 0.77).55,56 This
is illustrated in the behavior of star polymers which show a
decrease of Rg/Rh = 1.4 for a 3-armed polymer to Rg/Rh = 1.08
for a 270-arm polymer due to increasing concentration of
monomers in the core of the molecule as the number of arms
increases.54 For our bottlebrush systems, we observe that at a
fixed value of Nbb, as Nx decreases from 5 to 0, Rg/Rh decreases
in response to the greater density of monomers. For Nx = 0,
the densest of the bottlebrushes, we find that Rg/Rh decreases
from approximately 1.2 at the smallest value of Rg,tot to a
minimum of Rg/Rh ≈ 1.1 before increasing to Rg/Rg ≈ 1.3 for
the largest polymers. The eventual recovery of Rg/Rh as Rg,tot
(or equivalently, Ntot) increases is expected since random walk
behavior is expected to emerge for sufficiently long back-
bones.24 Our values of Rg/Rh are in reasonable agreement with
those observed by Chremos and Douglas31 and Dutta et al.37

The general trend of an initial decrease in Rg/Rh, followed by
an increase as Rg,tot increases persists for all values of Nx that we
simulated. As we will demonstrate in the following sections, the

Figure 2. Variation of the bottlebrush size as a function of
architectural parameters. (A) Rg of the backbone as a function of its
length for different values of Nx and (B) Rg for the entire molecule as
a function of its total degree of polymerization for different values of
Nx. For all data, error bars are smaller than the size of the points.
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nonmonotonic behavior of Rg/Rh has implications for

interpreting the relaxation dynamics of the bottlebrushes.
Modes of a Bottlebrush. As background, we briefly

review some central properties of the Rouse model of polymer

dynamics and compare the results of the model to numerical

calculations for molecular bottlebrush relaxations. The Rouse

model57,58 arises from solving the equations of motion for a

series of N beads connected by (N − 1) harmonic springs

while neglecting hydrodynamic interactions. The equation of

motion for each internal bead i is given by a Langevin equation

= [ + ] ++
r

r r r f
t

k T
b

d
d

3
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i i i i
B

2 1 1
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where ζ is the friction coefficient for the monomer and f i is a

Gaussian random force that is unique to monomer i.

Analogous equations can be written for the beads at the

ends of the chain.58 Equation 7 can be cast into a convenient

tridiagonal matrix form as
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or equivalently,

= +R A R F
t

k T
b

d
d

3 B
2 1

(9)

The large N × N matrix A1 in eqs 8 and 9 is a tridiagonal quasi-
Toeplitz matrix, with corresponding cosine eigenvectors59 that
can be used to obtain the normal coordinates of the chain
Xp(t). The eigenvectors can be obtained by singular value
decomposition (SVD). A1 represents the connectivity of a
linear polymer and must be altered accordingly to describe
bottlebrushes or other architectures. Each eigenvector of A1
captures the monomer displacement patterns of the chain for
mode p.50 As with POD, each eigenvector of A1, when ordered
by the decreasing magnitude of their corresponding
eigenvalues, transforms the monomer coordinates to the
normal coordinates according to eq 6. When ordered in this
manner, each eigenvector corresponds to increasingly fast
relaxation modes. As the magnitude of an eigenvalue decreases,
the relaxation mode described by the corresponding
eigenvector plays an increasingly small role. In fact, it is
known that the amplitude of each mode quickly decreases as p
increases.50,53

Shown in Figure 4a is a comparison between the cosine
functions in eq 3, derived analytically for the Rouse model
(solid line),58 along with the eigenvectors of A1 that were
computed numerically from eq 9 for a linear polymer (circles)
at a fixed degree of polymerization of N = 30 and for p = 1.
The numerical results have been shifted by a constant phase of
δ = π to match the analytical result, which does not affect the
analysis of the dynamics.50 The figure shows excellent
quantitative agreement between the analytical theory and
numerical calculation of the eigenvectors. We also compare
these functions to the results of applying POD to DPD
simulations of a linear homopolymer (N = 30) and the
backbone of a bottlebrush (Nbb = 30, Nsc = 10, Nx = 0). As
shown by the square (linear chain) and diamond (bottlebrush
backbone) points in Figure 4a, there is excellent quantitative
agreement among all three approaches. This suggests that
Rouse mode analysis using the transformation in eq 3 is
sufficient for analyzing the dynamics of the bottlebrush
backbone alone. These results also suggest that the backbone
of the bottlebrush in our simulations behaves as though it were
simply a linear polymer, and the time scales of its motions are
modulated by the presence of the grafted side chains as
previously hypothesized from experimental measurements.40,42

As implicit side chain models are developed to simplify
simulations of bottlebrushes,60 this similarity between the
relaxation modes of linear polymers and bottlebrushes will
enable facile simulations of their dynamics.

However, as seen from Figure 4(b,e), eq 3 does not hold for
analyzing the dynamics of the entire bottlebrush, and the
eigenvectors become more complex than for the linear case. To
understand the behavior of the entire bottlebrush, we first

Figure 3. (A) Hydrodynamic radius (Rh) of the entire molecule as a
function of its total degree of polymerization. Error bars are smaller
than the points. (B) Ratio of Rg,tot to Rh as a function of Rg,tot (i.e., as
molecular weight increases).
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numerically investigated a simple model molecule having Nbb =
10, Nsc = 3, and Nx = 0, resulting in a total degree of
polymerization of Ntot = 40 with ns = 10 side chains. The
Rouse model for the bottlebrush can be cast into a form similar
to that in eq 8 after small modifications to matrix A. With these
modifications, A resembles a direct sum of A1 and a series of
similar matrices that describe each side chain along with off-
diagonal elements that represent the bonding of the side chains
to the backbone monomers. The resulting matrix (A2) can be
very large for realistic bottlebrushes with large molecular
weights; for this simple example, A2 is a 40 × 40 matrix and is
shown in the Supporting Information (Equation S1). The
eigenvector for p = 1 is plotted in Figure 4b as circular points.
The elements of the eigenvector appear sinusoidal, and for
elements n > Nbb, the function is piece-wise continuous.
Discontinuities arise between sets of Nsc points for n > Nbb as a
result of boundary conditions imposed by grafting each side
chain to the backbone.53 For n < Nbb, the eigenvector is a
cosine function identical to that obtained from the Rouse
model: ψ1(n) = A0 cos[π/Nbb(n − 1/2)](solid black line). For
n > Nbb, each side chain produces small groupings of Nsc points

(ns such groupings in all). This suggests that the first Nbb
elements of the eigenvector describe the motion of the
backbone, after which each set of Nsc points describes the
motion of each side chain. Finally, we find that the side chain
motions are also described by a cosine function but have a
higher frequency of the backbone. For instance, if p = 1, we
find that the side chain motions are described by cos[3π/
nsNsc(···)] (blue lines). Additionally, the amplitudes of the side
c h a i n f u n c t i o n s v a r y a s

[ ]N n N n N2/ cos /( )( 1/2)stot sc bb (solid red line),
suggesting that the motions of the side chains are coupled to
the backbone monomer to which they are attached.

Finally, we computed the eigenvectors using POD from
DPD simulations to verify that the interpretation described
above applied to our simulations. The comparison between the
eigenvectors from the numerical approach to POD is shown in
the Supporting Information, Figure S2. Although the two
approaches produce very similar results, there are small
numerical differences between the approaches that likely
arise from the fact that POD is tracking the actual motions

Figure 4. (A) Comparison of the analytical Rouse model (solid line) and eigenvectors obtained from numerical calculations (circles) for a linear
chain. Eigenvectors from POD of DPD simulations for a linear chain (squares) and bottlebrush backbone (diamonds) show excellent quantitative
agreement. (B) Eigenvector for the first mode of a bottlebrush (Nbb = 10, Nsc = 3, Nx = 0), calculated numerically along with analytical results
overlaid as solid lines. The red line is the amplitude of the side chain portions, while the blue dashed lines describe the side chain motions. (C)
Eigenvector of the first mode for a larger bottlebrush (Nbb = 30, Nsc = 10, and Nx = 0) calculated numerically. The inset shows a magnified view of
the side chain region with the analytical results shown as blue lines. (D) Eigenvector of the p = 2 mode for the bottlebrush from panel (C), along
with analytical results overlaid as solid lines.
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of the monomers throughout the simulation, whereas the
numerical approach represents an idealized molecule. We have
observed similar differences in a previous study, and note that
while the true Rouse modes obtained from SVD of A2 arise
from considering only the harmonic potential between bonded
monomers, the modes produced by POD of the DPD
simulations contain contributions from all of the forces that
the monomers experience (i.e., from the conservative, random,
and dissipative forces).46

Although the analysis above was valid for p = 1, both the
numerical solution and the POD approach provide the
eigenvectors for higher-order modes. The next higher-order
mode (p = 2) is plotted in Figure 4d. The eigenvector
describing this mode is expected to be characterized by a
backbone region with double the frequency of the p = 1 mode
as well as a side chain region with an amplitude that varies in a
similar fashion, all of which are present as indicated by the
solid red lines. However, a full exploration of the behavior of all
of the eigenvectors is beyond the scope of this article.
Bottlebrush Relaxation Dynamics. Representative auto-

correlation functions Cp(t) for p = 1 are presented in Figure 5a
for (left to right) Nbb = 10, 20, 30, 50, and 100 at constant

values of Nsc = 10 and Nx = 1. Open blue points correspond to
calculations of Cp(t) using only the backbone monomers, while
solid black points correspond to Cp(t) calculated using all of
the monomers in the molecule. Red lines are fits to the
exponential decay described in eq 4 using βp = 1. For clarity,
we show fits to only the Cp(t) of the entire molecule. The
relaxation times of the bottlebrush backbone and entire
molecule are obtained by fitting their respective autocorrela-
tion function.

For the shortest backbone (Nbb = 10), we find that the
relaxation time of the backbone is faster than that of the entire
molecule for all values of Nx, as shown by the faster decay of
the blue points compared to the black points. However, as Nbb
increases, the autocorrelation functions for the backbone and
entire molecule become increasingly similar, and for Nbb ≥ 50,
they are almost indistinguishable. In Figure 5b, we plot the
ratio of the relaxation time of the entire molecule (τ1) to that
of the backbone only (τ1,bb) as a function of Nbb for Nx = 0−5
at a fixed side chain length of Nsc = 10. The trend of the
backbone relaxing faster than the entire molecule for smaller
values of Nbb persists across all values of Nx that we considered,
with the difference between the two relaxation times increasing
as Nx increases. As Nbb decreases for a fixed number of side
chains, the molecule increasingly resembles a star polymer.
Since the relaxation time of the backbone decreases as Nbb
decreases, the upward trend observed in Figure 5b is expected
to persist and approach the total degree of polymerization of
the polymer, i.e., τ1/τ1,bb = τ0Nα/τ0 = Nα as Nbb → 1, where α
is a scaling exponent. In contrast, for Nbb ≥ 50, the difference
between the two relaxation times becomes negligible, even for
the largest side chain spacing of Nx = 5. This observation
agrees well with the work of Ishaq et al.41 who measured the
internal dynamics of ultralong bottlebrushes using DLS. By
comparing the bottlebrush (Nx ≈ 1.5) to ultralong linear
polymers, they found that while the presence of side chains
may result in longer relaxation times, ultimately the internal
motions of the molecule were dictated by those of the
backbone. Because τ1/τ1,bb → 1 for sufficiently large values of
Nbb, coarse-grained models with implicit side chains, such as
those developed by Pan et al.,60 are expected to correctly
reproduce the dynamics of molecular bottlebrushes using the
modes for linear polymers and Rouse mode analysis.

In Figure 6a, we plot τ1 as a function of its radius of gyration
for all of the systems that were simulated and compare the
scaling of τ1 for the bottlebrushes to linear polymers (filled
triangles). The relaxation times for all bottlebrush polymers fall
onto a single curve, indicating a similar scaling behavior for all
polymers with that architecture, whereas the linear polymers
follow a different scaling behavior. Despite the fact that the
bottlebrushes are in a dilute solution, we observe a scaling τ1 ∼
Rg

3.4, which is between the predictions of the Zimm (τ1 ∼ Rg
3)

and Rouse models (τ1 ∼ Rg
4 for v = 0.5). This scaling appears to

hold true even for Nx = 5, where the side chains are relatively
far from each other. In contrast, for the linear polymers, τ1 ∼
Rg

2.7, which is close to the Zimm prediction of τ1 ∼ Rg
3. We

showed previously using DPD and POD, with the same
parameters as in this work, that the linear polymers exhibit a
scaling τ1 ∼ N9/5, which is exactly the Zimm prediction for
polymer coils with ν = 3/5.46 Thus, while linear chains follow a
scaling law predicted by the Zimm model in dilute solutions,
bottlebrushes follow a different scaling law with respect to their
radius of gyration. Previous studies have observed differences
between the scaling laws of the dynamics of linear polymers,

Figure 5. (A) Normal coordinate autocorrelation function Cp(t) for p
= 1 plotted as a function of time for different backbone lengths (Nsc =
10 and Nx = 1). Open blue points are from the backbone monomers
only, while solid black points result from considering all monomers.
Red lines are fits to an exponential decay. (B) Ratio of the longest
relaxation time of the entire molecule (τ1) to that of the backbone
(τ1,bb) plotted as a function of backbone length for different values of
Nx. Lines are guides for the eye.
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linear polymers under cylindrical confinement, and star
polymers in dilute solutions.46,61 As shown in Figure 3b, Rg/
Rh varies with bottlebrush molecular weight, indicating that the
scaling law observed in Figure 6a may be influenced by Rg and

Rh scaling differently with molecular weight for different
architectures. In particular, while the linear chains display a
constant Rg/Rh ≈ 1.6, the bottlebrushes show a decrease in this
ratio to a minimum value, followed by a subsequent increase as
molecular weight increases.

These computational results can be compared to recent
experimental neutron spin−echo (NSE) measurements taken
by Bichler et al.,45 where the behaviors of two PDMS-g-PDMS
bottlebrushes were compared. In one sample, the side chain
length was relatively short, and NSE measurements were
sensitive to the relaxations of the backbone. The second
sample had an identical backbone length but long side chains
such that NSE measurements observed relaxations similar to
the “entire molecule” relaxations that are presented in our
current work. For the sample with long side chains, a scaling τ1
∼ Q−3.9 was observed, where Q is the scattering vector,
implying that τ1 ∼ Rg,tot

3.9 . This result is very close to our results
in Figure 6a. In contrast, for the short side chain sample, τ1 ∼
Q−2.5, implying τ1 ∼ Rg,bb

2.5 . The relaxation time of the backbone
(τ1,bb) is plotted as a function of Rg,bb for our simulations in
Figure 6b. Although there are slight variations in the scaling of
τ1,bb with Rg,bb for different values of Nx, the scaling exponents
are similar to each other and roughly between 2.2 and 2.4,
implying that one might expect experimentally to observe a
scaling close to τ1,bb ∼ Q−2.4, as Bichler et al. measured.45 Our
simulations support Bichler et al.’s hypothesis that NSE
measurements of the lower-molecular-weight side chain sample
are sensitive to the backbone relaxations, while measurements
of the higher-molecular-weight side chain sample probe
relaxations more akin to the “entire molecule” relaxation
times presented here. In addition, our results indicate that
although the relaxation times of the backbone and entire
molecule may be similar to one another (Figure 5b) for large
values of Nbb, their scaling with length or scattering vector are
different. To further explore this point, future neutron
scattering measurements taking advantage of deuterated
monomers and contrast matching would be well-warranted,
in terms of both better understanding the relaxation dynamics
and scaling of the backbone/bottlebrush radius of gyration.

To account for the nonmonotonic behavior of Rg/Rh with
increasing molecular weight, we investigated the scaling of τ1 as
a function of Rh (Figure 6c) where we observe that for all
values of chain length, side chain spacing, and architecture
(linear versus bottlebrush), the relaxation times collapse onto a
single curve. The scaling of the longest relaxation time is τ1 ∼
Rh

2.9 which is in agreement with the prediction of Zimm for
polymers in dilute solutions. Dutta et al. examined the scaling
of the intrinsic viscosity of bottlebrush solutions with Nbb, and
they found intrinsic viscosity scaled as predicted by the Zimm
model. In analyzing their NSE measurements, Bichler et al.
calculated an intrinsic relaxation time (⟨τ⟩int) that accounted
for the local structure of the solution and found that it scaled as
⟨τ⟩int ∼ Q−2.8. Not only is this prediction in quantitative
agreement with the Zimm description of polymer dynamics
but it is also in quantitative agreement with our results here.

■ CONCLUSIONS
In summary, we performed numerical analysis and dissipative
particle dynamics (DPD) simulations of dilute solutions of
molecular bottlebrushes. Proper orthogonal decomposition
(POD) was used to extract the modes of the bottlebrushes so
that mode analysis could be performed to observe the behavior
of their relaxation times. Representative snapshots from the

Figure 6. (A) Longest relaxation time of the entire bottlebrush (τ1)
plotted as a function of the radius of gyration of the molecule for all
values of Nbb and Nx that were simulated. The dashed black line is a
least-squares fit to the data, showing τ1 ∼ Rg

3.4. (B) Longest relaxation
time of the backbone (τ1,bb) plotted as a function of the backbone
radius of gyration (Rg,bb) for different values of Nx. (C) τ1 plotted as a
function of Rh, showing quantitative agreement with the predictions of
the Zimm model. For all data, error bars are smaller than the size of
the points.
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simulations as well as quantitative analysis of the radius of
gyration of the bottlebrush indicated that our DPD simulations
reproduce the expected conformation of a bottlebrush in dilute
solutions.

The relaxation modes obtained from POD were found to be
in good agreement with those computed by numerically
solving the Rouse model for small model systems. The
backbone displays the same modes as a linear chain, while the
entire bottlebrush showed more complicated modes that
accounted for monomer displacements along the backbone
that were coupled to the relaxations of the side chains. Some
interpretation was provided for the first few modes. Mode
analysis successfully produced relaxation times which matched
neutron scattering experiments in terms of the scaling of τ1
with a backbone radius of gyration.

Finally, we noted that although our DPD simulations
confirmed that linear polymers had relaxation times that scaled
according to the Zimm model, the relaxation times of the
bottlebrush appeared to follow a different scaling law. The
origin of this disagreement resides in the significant changes in
bottlebrush shape that occur as Nbb increases, resulting in a
ratio Rg/Rh that is not constant. When this behavior is
accounted for, the dynamics of dilute bottlebrush solutions is
well-described by Zimm dynamics. Future neutron scattering
measurements that take advantage of deuterated monomers
and contrast matching may provide further insight into the
bottlebrush structure and dynamics by separately isolating
scattering from the backbone and side chains relative to the
entire molecule.
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